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Markov décision processeé have been studied extensively (see
Howard 1960; Manne 1960; Denardo 1968, 1977, for example) due to the
ability of generally available programming procedures, such as linear
programming, to solve a wide class of problems.l! These models consider
finite state modgls, with states 1, 2, ..., N; observed at equally
spaced epochs. Associated with each state i is a non-empty decision
set Di' Whenever a state 1 1s observed, some decision k € Di mast be
chosen. Reward R: is received ;mhediatély, and a transition is made

_ k : N _k _
with probability Pij' It is assgmed that zj=1Pij = 1 for all i, k,

80 that the matrix PF is stochastic. Assume also that Pk has only one
ergodic chain (Denardo_lQ?? ghows how to relax this assumption). Let
V" be the value of following some stationary polidy. Then it is well

known that:

vV = ng + w + o(l) as n -+ o

It is assumed that it is desired to optimize g, the gain, and then out

of all gain-optimal policies, choose-the one that has the largest bias

Ladee

w. Let A be the set of all stationary policies. Then:
]
gk = max {g"|8eA}
. 8 5 '
wi = max {wlléaﬁ, g = g} i=1, ..., N

It is proven in Manne (1960) or Denardo (1977) that a gain-optimal

stationary policy must satisfy the following linear program:

) Y he notation and discussion on Markov decision problems follows
Denardo (1977).




Minimize g

subject to: ' Program (1)
k& ok '
g +z - zjrijzjé_ni all 4, k

g, 2 unrestricted

or equivalently the dual program:

. k
Maximize EiEk;:Ri

subject to: | o ' Program (2)
ke
£ X - zjzkx';p‘;j -0 1= 2, cees
x> 0 alli,k

Suppose instead of one reward each period, we are concerned

about a veétor of rewards RE = (Ri 12 e RE j), while retaining the
» ]

rest of the model as described. We consider again only stationary

o~

policies. Sobel (1977) proves that an ordinal sequential game pos-—
sesses an undominated solution amongst stationary policies if it has
one at all. Restricting ourselves to stationary policies is thus
reasonable, and in many applications for infinite.horizon problems
stationary policies are the real policies of interest. Arguing as
before, it is true for each objective £, 1 < £ < j, that the total

expcected value of each stationary policy satisfies

n
VL = ng, + Wp + o(l)




3
Therefore, for each objective, its gain-optimal policy satisfies
programs (1) or (2). Denote the constraints in each of these programs,

for each objective £, as Ci', Ci.

Let Jl(x), aesy Jj {(x) be functionpmapping a subset of
’IRj into R for x € X, and let J(x) = (Jl(x), emesy Jj(x)). Let £
be the set of feajsihle values of J (x). Then a particular value of
J{x), say J*,. is undominated if there is no - feagible J(x)
such that

.2/
J(x) > J*

Let A be the set of J(x)'s that are undominated, and let C be the
corresponding subset of X.- The operator vmax maps { into A, that is
vmax J(x) maps the set of feasible retqrns into the set of undominated
returns. At times I use the slightly abused notation that vmax J(x)
maps X into C, that is it maps the set of feasible solutions into
the set of undominated solutions.

i

If each J* is a linear function and X is a convex polyhédron,

then the problem is often called the linear vector maximization problem
(see Evans and Steuer 1973; Yu 1974; Zeleny 1974). Each stationary

policy § produces a vector gain

3
3

We desire the set of policies § that satisfies:

8 8
g8 = (85 +v0s By)

8
vmax g

"'s_i 2/When comparing two j-vectors: x> J implies xi?_?_yi for all

ij xz_y. implies x>y and x ¥ y; x>y implies xi>yi for all i.
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However, this is clearly equivalent to:

viin g
subject to Ci £=1, «-es ] (Ha)

or equivalentliy: .
k ' k
vmax (zi;ksini, 17 ccne Zizﬁ?ERi’ j)
(w)
subject to Cﬁ £ =1, 2eay } ‘ B

The two programming problems Ha or Hb reduce the multi-
objective Markov decision process to a linear vectbr maximization
problem. For célculating actual efficient sets, this is a signifi-~
cant result, since what progress has been made for developing
algoritims for multiobjective problems, has been made in the area
of linear problems (see Evans and Steuner 1973; Yu 1974; 2gleny 1974,
Benson 1976; Lin 1976 for exampie). As these alguriéhms become more

efficient, it should be possible to calculate efficient sets for

quite general multiobjective Markov decision processes.

II. Discretizing Multiobjective Dynamic Programs

A more common situation, particularly in fields of my interest
(fisheries) is that there are j objective functions, which are continuous
functions of a state that is contained in a compact subset of Euclidean
space, and a continuous random transition function. _Assume we can reétrict
ourselves in the infinite model to stationary policies (again, conditions
that insure that the Pareto optimal policy is gtationary can be found in

Sobel 1977). Also assume that in the infinite model we are willing to

discretize the state space, so that the return functions become plecewise
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linear. It is well known for the single objective case {see for
example Sobel 1971) that this discretization leaves the original
problem equivalenf to a Markov decision modei, and the corresponding
iinear program is obtained as in the last section, with R:,'t being
the wvalue of the return function J£ at state 1. Thus it is at least
theoretically possible to calculate the set of Pareto optimal sta-
tionary policies for a wide class of problems. Given other special
structure in the problems (such as being "separable" as in Denardo
1968) it may be possible to reduce the resulting linear vector
maximization problems to the point where they are of solvable
dimensions. |

I hope to. explore these possibilities in a later paper,
using applications that arise from managing fisheries under the

Fishery COnservatioﬁ and Management Act of 1976.
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